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A generalization of the Eden model is proposed as a model of polymer crystallization. The model exhibits 
all three growth regimes. It produces the Seto-Frank model in one limit and demonstrates departures from 
the Seto-Frank model induced by discreteness of the crystal. It is able to predict curved growth fronts; in 
fact it predicts that circular crystals are to be expected in regime III. 
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INTRODUCTION 

Seto 1 in 1964 and Frank 2 in 1974 developed a set of 
differential equations that describe the growth of polymer 
crystals. When combined with the kinetic nucleation 
theory developed by Hoffman and Lauritzen 3 5, the 
Seto-Frank equations predict a number of properties of 
polymer crystal growth, including regime transitions 
and the dependence of macroscopic crystal growth rates 
on microscopic properties. For some time, therefore, the 
resulting kinetic nucleation theory has had wide acceptance. 
This has changed, however, with the observation of 
single crystals of polymers such as polyethylene and 
polyoxyethylene that have curved growth fronts 6 12, 
since the ability of the standard theory to predict the 
existence of growth fronts with curvature has been 
brought into question 13-21. 

The Seto-Frank equations predict curved growth 
profiles; under certain conditions, they yield asymptotically 
exact elliptical growth profiles 22-25. However, these 
elliptical growth profiles raise additional questions. For 
example, to obtain solutions with appreciable curvature 
requires the suppression, discussed more amply below, 
of the substrate completion rate, g, by several orders of 
magnitude 26'27. Some authors have found this to be 
objectionable and therefore prefer an interpretation 
promoted primarily by Sadler la-2x. He argued that the 
kinetic process upon which the Lauritzen-Hoffman and 
Seto-Frank theories are based is fundamentally incorrect, 
and must be replaced by a thermal roughening transition 
mechanism. On the other hand, Hoffman and Miller 26'27 
have argued that under certain conditions, chain folds 
are adequate to suppress the substrate completion process 
and therefore produce curved crystals with morphologies 
comparable to those observed experimentally. 

There is, none the less, an additional problem 
associated with the elliptical solutions to the Seto-Frank 
equations: under conditions of appreciable curvature, the 
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Seto-Frank equations are invalid. This is not to say that 
the elliptical profiles are incorrect solutions to the 
equations, but rather that the equations themselves 
have lost validity. The Seto-Frank equations are 
based on a continuum approximation, and become 
invalid whenever the granularity of the crystal lattice 
becomes significant. This limitation also implies that the 
Seto-Frank equations are unable to predict regime III 
growth. To understand the limitations of the Seto-Frank 
equations requires us to study models that retain a 
discrete crystal lattice, which leads naturally to questions 
of random growth on lattices. 

Models of random lattice growth have attracted 
considerable attention during the last decade. We will be 
concerned here with generalization of the so-called Eden 
growth process 28-52. The existence of a domain or cluster 
of lattice cells at time t is assumed. The boundary of the 
cluster is defined as the set of cells that are not in the 
cluster but that have at least one nearest neighbour that 
is. In each time step, one cell is selected at random from 
the boundary to become a member of the cluster. One 
is interested in the statistical properties of the cluster as 
they develop over time. An alternative realization of the 
Eden model results if, instead of one boundary cell being 
selected in each step, any given boundary cell joins the 
cluster with probability p in each step. Obviously the two 
realizations become equivalent in the limit p ~0, differing 
only in the flow of time. 

In this paper we study a generalization of this second 
realization. We define four separate probabilities, Pl, P2, 
P3, P4. If a given boundary cell has j nearest neighbours 
in the cluster at time t, then that cell joins the cluster 
with probability pj during that time step. This model 
exhibits growth in all three regimes, and allows us to 
study the development of curved edges etc. In addition, 
it allows us to examine the limitations to the validity of 
the Seto-Frank equations. 

A number of related growth models have also been 
considered 53-s8. These generally exhibit all three growth 
regimes and illuminate many properties of each regime. 
However, generally they are not concerned with questions 
of curved edges or of gross crystal morphology. 
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LIMITATIONS OF THE SETO-FRANK 
APPROACH 

The Seto-Frank equations assume that nuclei appear on 
a substrate with rate i per unit substrate length and per 
unit time and that the resulting pair of steps or niches 
begins to move, one to the left and one to the right, with 
average velocity_ g, as new crystalline stems add to the 
two niches x'2. These two niches continue to move until 
they either strike another niche coming from the opposite 
direction, or until they encounter the boundary of the 
crystal. There are two relevant quantities derived from i 
and g, which we will here call the Frank length, LF, and 
the Frank velocity, GF, that are defined as follows: 

L F = (29/i) 1/2 (1) 

GF=b(2io) 1/z (2) 

where b is the lattice spacing. The Frank length is 
associated with the average distance between niches, 
while the Frank velocity is simply the regime II growth 
rate. (Prediction of regime I growth rates in the context 
of the Seto-Frank equations requires introduction of a 
third length scale L, representing the overall crystal size. 
Since such a length is absent in the elliptical-profile 
treatment, that treatment is inherently regime II.) Since 
the Seto-Frank treatment neglects the granularity of the 
lattice, a necessary condition for its validity is Lv >> b. The 
elliptical-profile solutions state that each growth front of 
a growing crystal is a section of an ellipse z2-2s. The two 
axes of the ellipse are in the ratio 9/GF, where 9 and Gv 
are the substrate completion rate and overall growth rate 
as defined for that particular growth front. In the more 
traditional applications of the theory we have 9 >> GF, the 
ellipses are very elongated, and the associated growth 
fronts are effectively flat. However, if O decreases relative 
to Gv, the growth fronts exhibit appreciable curvature. 

The condition for appreciable curvature, therefore, is 
9 ~- GF, which requires, by equations (1) and (2), LF~-b, 
which means that the Seto-Frank treatment is not valid 
when the growth front is significantly curved. Two other 
symptoms of the failure of the Seto--Frank equations are, 
first, that the elliptical-profile solution leads to absurd 
crystal shapes if 9 < GF and second, its inability to predict 
regime III. In this paper, we consider the properties of a 
random lattice growth model which exhibits Seto-Frank 
behaviour in the extreme 0 >> GF but which remains valid 
as we consider the cases 0~GF and 0 < G  F since it 
preserves the discreteness of the lattice. 

INTRODUCTION TO THE MODEL 

Let us consider a simple square lattice. At any given time, 
some set of lattice cells are assumed to be painted in, all 
others not. For example, we will frequently assume that 
at t=0 ,  only the cell at the origin is painted. Then in 
each discrete time step, each unpainted cell is painted in 
with one of the four probabilities Px, P2, P3, P4, if the cell 
in question has respectively 1, 2, 3 or 4 nearest neighbours 
that are already painted. In this way, as time advances, 
the painted region or cluster grows to fill more and more 
of the lattice, and we are primarily interested in the rate 
at which the cluster grows and the cluster morphology 
that eventually develops. This model is a generalization 
of the Eden model 28-52 which has been proposed as a 
model for such random growth processes as the spread 
of epidemics or tumour growth. 

a b c 
Figure 1 Numerical studies of the model were performed with one of 
three boundary conditions: (a) open boundaries, growth permitted 
simultaneously in all directions; (b) and (c) growth down channels, 
inclined either 0 ° or 45 ° relative to the lattice, with periodic boundary 
conditions 

We have primarily employed three different types of 
boundary conditions, summarized in Fioure 1. The first 
type of boundary condition, which we will refer to as the 
open boundary condition, assumes that only the lattice 
cell at the origin is painted at t=0 ,  and the cluster is 
permitted to grow simultaneously in all directions. The 
other two types of boundary conditions consider growth 
down channels, inclined either at 0 ° or 45 ° relative to the 
lattice direction. These will be called the 0 ° or 45 ° channel 
boundary conditions. These begin at t = 0 with the lowest 
tier completely painted in, and then are permitted to 
develop over time with the assumption of periodic 
boundary conditions across both walls of the channel. 

The probability Pl corresponds, of course, to the 
nucleation rate i while the probability P2 corresponds to 
the substrate completion rate 9. In fact, we form a 
connection with the kinetic nucleation theory of polymer 
crystal growth by writing 

i=  Pl =Px (3) 
bAt 

p2 b 
9 = - ~ - = P 2  (4) 

where b is the lattice spacing and At is the duration of 
the time step in the model. The second equality in each 
case results from the assumption of length and time units 
such that b=  1 and At= 1, a convention that will be 
followed hereafter. 

We define two separate growth rates, Go and G45, as 
overall growth rates of the cluster. Go represents the rate 
at which the boundary of the cluster advances in 
directions parallel to either the x or y axes, since by 
symmetry these rates must be the same .  G45 represents 
the similar quantity defined for directions inclined 45 ° 
relative to the x or y axes, i.e. along the diagonals. With 
the open boundary condition, we estimate G O in the + x 
direction by tracking the progress of the leftmost vertical 
line lying completely to the right of the cluster, with 
similar procedures in the - x  and the _ y  directions. 
These four velocities are then averaged. The value of G O 
may be estimated for growth in the 0 ° channel by keeping 
track of the rate at which new cells are added. For 
example, if the channel is L units wide, then the growth 
front has obviously moved an average of 1 unit every 
time it adds L cells. The value of G45 may be estimated 
in like manner. 

We have found that the cluster grows uniformly in 
time, whatever the values of pj. After a relatively short 
induction period, the cluster assumes a particular shape 
and a particular radial growth velocity that depend on 
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the particular values of p j, and it maintains that same 
shape and velocity over time. 

THE CASE pl=p2=P3=P4=-p: THE STANDARD 
EDEN M O D E L  

An interesting special case is obtained whenever 
Pl --- P2 = P3 = P4 ~ P. When p = 1, the growth is completely 
deterministic, in each time step all nearest neighbours are 
painted in. After time t the cluster consists of all lattice 
sites that can be reached in t steps and therefore has the 
diamond shape shown in Figure 2. The two growth rates 
Go and G45 are respectively 1 and 2-1/2. As p decreases, 
the structure becomes rounded, and approaches the 
nearly circular habit also shown in Figure 2. In the limit 
p ~ 0 ,  we recover the standard Eden model 2a-52. The 
Eden model has been the subject of intense interest 
recently, with most of the interest centred on the long-time 
global structure of the cluster, its growth rate, distribution 
of voids in the cluster, the steady-state structure of the 
boundary, and the approach to this steady state. The 
following paragraphs summarize the properties of the 
Eden model, and of its generalization to non-zero p. These 
properties are either found in the literature 28 s2, or were 
computed directly by the authors. 

The Eden cluster on the simple square lattice has a 
nearly circular outline that progresses with a constant 
outward velocity. One surprising aspect is that the outline 
is not perfectly circular 34'36'38'42'59. This effect is obvious 

0.5 = ~ = ~ 0.3 P P 

0.1 p= 
Figure 2 Cluster morphologies obtained when pl=p2=p~=p~=-p. 
For p near 1, lozenge shapes develop; these reflect the discrete time 
step and are therefore non-physical. For p near 0, the nearly circular 
clusters of the standard Eden model develop 

t'q 
I I I I I I I 

o 
t-i 

-4.5 -4.0 -3.5 

O 

o 
O 

-3.0 .2.5 -2.0 -1.5 -~.0 

log(p) 

-.5 

Figure 3 Growth rates obtained when P l = P2 = P3 = P4 ~ P, displayed 
here as Go~ p or G4J p. (©) Go/P computed with open boundaries; (,) 
G4s/P computed with open boundaries; error bars, Go/p (upper set) or 
G4s/p (lower set) computed with channel boundaries; solid curves, best 
linear fits, equations (5a) and (5b) 

in Figure 3, where the two ratios Go/p and G4s/p are 
plotted as functions of p. These have been computed in 
a number of different ways. The open circles or asterisks 
were computed directly from clusters growing with the 
open boundary conditions shown in Figure la. The error 
bars were computed from growth in channels, either at 
0 ° or 45 °, and show the value of the mean, plus or minus 
one standard deviation, obtained from a number of 
independent runs. (Accuracy in this case is excellent at 
lower p, where the error bars are very narrow, but 
deteriorates at small p.) The two sets of data in Figure 3 
are well represented by 

Go/p = 2.138 - 1.913p (5a) 

G45/p = 2.105 - 2.037p (5b) 

which appear in Figure 3 as solid curves. This slight 
difference between Go and G45 obviously implies that the 
cluster is not completely circular. 

We have found that the final steady state values of the 
growth rates Go and G45 are obtained only rather slowly, 
and that the measured values can increase slightly by 
increasing the duration of the calculation. Therefore, 
the limiting values of 2.138 and 2.105 reported in 
equations (5) and (6) are both a few per cent too low. 
After long, exhaustive runs in channels we conclude that 
the growth rates obey 

lim G ° =  2.167 + 0.002 (6a) 
p ~ 0  p 

lim G45 = 2.127 ___ 0.002 (6b) 
p ~ 0  p 

These limiting values are obtained, for growth in 
channels, only after the growth front has progressed a 
distance of approximately 200. On the other hand, the 
overall variations amount  to only a few per cent, so we 
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continue, in what follows, to consider results obtained 
over shorter runs. 

The Eden cluster contains voids: the growth process 
leaves voids behind as the duster front moves through 
a region of space. However, the probability of voids 
surviving for very long times after the passage of the 
growth front is very small. Eventually, any given void 
will be filled and the concentration of voids is only large 
in the vicinity of the boundary. 

The growth rate Go computed in the open boundary 
case is shown as a function of p in Figure 4. Obviously, 
for this model Go=2.167p in the limit p-*0. Near p= 1, 
the curve departs from this proportionality. This is due 
to the discrete time step; in continuous time we would 
expect the proportionality to hold universally. 

THE CASE pl<<l, p2<<l, pa=p4= 1: A MODEL 
FOR POLYMER CRYSTAL GROWTH 

We now consider the properties of the model in those 
situations for which the various pj values are not 
necessarily equal. Most of our effort has been expended 
in studying the case where Pl << 1, P2 << 1,  Pa = 1 and P4 = 1. 
It is important to keep both Pl and P2 small to minimize 
the effects of the discrete time step. On the other hand, 
we find that the overall growth rate and global 
morphology of the cluster are insensitive to P3 and P4, 
and therefore typically set P3 and P4 to unity. The 
probabilities P3 and P4 influence the way in which the 
cluster boundary ripens, but have little effect on the way 
in which the duster boundary invades new territory. 

When grown in the open boundary condition, the 
model exhibits a regime III--.II transition. The value of 
Go in regime II is, according to equations (1)-(4), 
(2pip2) 1/2, while in regime III it proves to be given 
accurately by the standard Eden result of equation (6a), 
2.167pa. Therefore: 

G O = (2piP2) 1/2 regime II (7a) 

Go = 2.167pl regime III (7b) 

with the regime transition occurring where these two 
velocities cross over one another: 

Pl/P2 <0.426 --*regime II (8a) 

Pl/P2 > 0.426 --,regime III (8b) 

A few results for Go obtained with the open boundary 
condition are shown in Figure 5. Note that the actual 
growth rates are given quite well by equation (7), except 
when px ~>0.1, when, as already mentioned, the results 
become sensitive to the discreteness of the time variable. 

The gross cluster morphologies prove to be a function 
only of the ratio P~/P2, except when pl approaches unity. 
Several examples are displayed in Figure 6. These begin 
as square crystals with effectively fiat edges when p: <<P2. 
This corresponds to the fiat, sectored crystals expected 
whenever nucleation rates are small. As p: approaches 
P2 from below, these fiat crystals become more and more 
rounded, in approximate agreement with the predictions 
of the elliptical-profile treatment. These tend, eventually, 
to the rounded, nearly circular patterns of the standard 
Eden mode. In fact, for all values of P:/P2 for which we 
expect regime III by equation (8), we find the overall 
morphology to be the near circles of the standard Eden 
model. However, cluster morphology loses dependence 
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Growth rates Go as a function of p for P l = P2 = P3 = P4 -= P 
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Figure 5 Growth rates Go when p3 = p4 = l and when pl and p2 assume 
t h e  v a l u e s  s h o w n .  So l id  l ines  a r e  d r a w n  a c c o r d i n g  to  e q u a t i o n s  (7) a n d  (8) 

o n  P l / P 2  when Pl approaches unity. Then the lozenges 
first encountered in the last section at large p appear. 

In order to characterize the structure of the duster 
boundary, and to compare these results to those of the 
elliptical profiles given as solutions to the Seto-Frank 
equations, we have developed a scheme for fitting an 
elliptical section to the boundary of the growing duster. 
Consistent with the symmetry of the lattice, we employ 
four equivalent elliptical arcs, as in Figure 7, in an attempt 
to characterize the boundary. Of course, this is not meant 
to suggest that the dusters have exactly elliptical profiles, 
but only to obtain the best ellipse that fits the 
profile. During growth of the profile, in the open 
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0.01 0.03 

Figure 6 Cluster morphologies obtained when pl<<l, p2<<l and 
P3 =P4 = 1. For these Ps values, the gross morphology is a function of 
Pl/P2 only; the Pl/P2 ratio producing each cluster is shown. As Pl/P2-*O, 
we obtain squares. Whenever Pl/P2 ~ 1 we obtain the near circles of 
the standard Eden model 

boundary condition, the states of the lattice cells Ca,q), 
(2p,2q), (3p,3q) . . . .  are monitored, where p and q are 
relatively prime integers. The times at which each of these 
cells join the growing cluster are recorded, from which 
we are able to estimate a growth rate G(O), for 0 the polar 
angle associated with the point Ca,q). These are obtained 
for many different angles 0 around the circle, and then 
averaged over all symmetry-equivalent angles to give a 
set of G(O) data for 0 in the interval 45°~<0 ~< 90 °. These 
polar-coordinate data are converted to a set of Cartesian 
coordinates x and y, to which this ellipse is fit: 

_ _  2 0 C 2 X 2  3t - y2 _ Gr (9) 

by standard linear regression, treating x 2 and y2 as  

linearly dependent variables. The limit ct--,0 corresponds 
to flat, non-curved edges; when ~ is near 1 the profile 
is nearly circular. The quantity G r in equation (9) 
corresponds to Go, at least to the degree that the ellipse 
of equation (9) corresponds to the actual data. Indeed, 
the ratio G,/Go measures the goodness of fit. 

The Seto-Frank ellipses, as previously mentioned, have 
axes in the ratio Go/g, from which it follows that the 
Seto-Frank prediction for ct is simply 

 lOl 
g \ P 2  / 

This prediction is compared with the results of the present 
model in Figure 8. As stated above, the cluster 
morphology is seen to be a function of Pl/P2 only, 

J 

J 

Figure 7 To characterize cluster morphologies, four equivalent 
elliptical arcs are fit to the boundary as explained in the text 

• O 

I I I I I 
• 0 .I~ 

-3 

• 0 '~" 

• x- • O 0  .K..X- ~ _  g_,.~.o,. ~.~.....-..~.,.., . . . . . . . . . . .  

...4ar"~ q, . 
v. l l ,  i 
.4~ "X'I 

.. 
- / 

; I " / 
; 0  

! 
?: / - - - Seto-Frank prediction _ 
8 1 

/~ / .......... Fit 

o/  / • P2 =0.1 

o..~// o p:=0.01 . . , ' /  

.jp.m.'~'o P2 = 0.001 

I I I I 

-2 -1 1 2 3 

I 

0 

log(p ]/p 2) 

Figure 8 Variation of the shape parameter ~ with Pl/P2. Symbols give 
simulation results; the two curves are respectively the Seto-Frank 
prediction, equation (10) ( - - - ) ,  or the fit given by equation (11) (---) 

except when Pl approaches 1. The agreement with the 
Seto-Frank prediction is only qualitative, except when 
Pl/P2 < 10-2, i.e. when the clusters have very flat edges. 
The ellipses predicted by the Seto-Frank equations 
underestimate the actual curvature over the entire range 
Pz/P2 <½. The actual values of ct vs PJPz are represented 
quite well by this parametric equation: 

P2 \1 +2.537~J ( 2 -  1.47~ 4) (11) 

which is also displayed in Figure 8. It yields two 
asymptotic values of ~, 0 and (1.47/2) z/4 = 1.08, depending 
on whether Pl/P2 is small or large. Figure 8 displays a 
number of points where the best fit ~ is considerably 
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greater than 1, these correspond to values of Pl 
approaching unity, are sensitive to the discrete time step 
and are therefore unphysical. As mentioned above, when 
the ratio G,/G o is near 1, the simulation data are well 
represented by an ellipse. Computed values of G~/G o are 
always within a few per cent of unity, implying that the 
best fit ellipses as given by equations (9) and (11) 
adequately represent the available data to within the 
accuracy thereof. (As one would certainly expect, G,/G o 
is not near 1 when Pl ~- 1. The non-physical lozenges 
obtained in this case are not well fit by an ellipse.) 

As a final comparison, we display in Figure 9 the ratios 
Go/G45, first as computed by simulation with the open 
boundary condition, and also the predictions provided 
by both the Seto-Frank solution and by the fit, 
equation (11). (Any ellipse obeying equation (9) will yield 
Go/G4s=[(1-t-0~2)/211/2.) This figure shows nicely the 
transition from the flat squares (Go/G45 =2-1/2) to the 
near circles (Go/G45 ~-1), to the non-physical lozenges 
(Go/Gas =21/2). 

The regime transition is expected to occur, according 
to equation (8) near the point where either c( or Go/G45 
reaches 1. Therefore we conclude that the fiat, square 
clusters characterized by small values of Pl/P2 are deep 
in regime II, and that their growth is predicted accurately 
by the Seto-Frank equations. The rounding that occurs 
as Pl/P2 increases is predicted only qualitatively by the 
Seto-Frank equations, and is indicative of an impending 
transition to regime III. The transition to regime III 
occurs when the clusters have become nearly circular. 
The clusters continue to be nearly circular throughout 
regime III. 

To observe a transition to regime I requires the 
introduction of an additional length scale, which becomes 
available when we consider growth with the 0 ° channel 
boundary condition. Figure 10 displays growth rate data 
in that particular case. The prediction for the growth rate 
in regime I is: 

Go=Lpl (12) 
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Figure 9 Variat ion of the ratio Go/Gas. Symbols  give simulation 
results; the two curves are respectively the Se to -Frank  prediction ( - - - ) ,  
and the fit given by equat ion (11) (---)  
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Figure 10 Growth rate data for growth in 0 ° channels. Symbols are 
simulation data, the solid lines are drawn according to equations (7), 
(12) and (13) 

where L is the width of the channel. The crossover from 
regime I to regime II occurs when equations (12) and (7a) 
cross. Therefore, we may extend equation (8) to read: 

Pl 2 
< ~regime I (13a) 

P2 L2 

2 < P l  <0.426 ~regime II (13b) 
L2 P2 

0.426 < Pl -~ regime III (13c) 
P2 

Figure 10 was computed using a value of L=50. It is 
obvious from Figure 10 that the growth rates of this 
particular model are in good agreement with these 
predictions. 

SUMMARY AND DISCUSSION 

We have introduced a generalized Eden model as a 
representation for the process of polymer crystallization. 
The model indicates the limits of accuracy of the 
Seto-Frank equations. It also successfully exhibits all 
three growth regimes that have been well characterized 
both experimentally and theoretically. 

The current sociological climate in the field of polymer 
crystallization is such that some may take exception to 
our claim that the data of Figures 5 or 10 exhibit regime 
transitions. It will be noticed that the actual curves are 
much more rounded and smooth than the lines drawn 
according to expressions (7), (12) and (13), and that these 
lines severely misrepresent many of the points. (The 
simulation results for the 0 ° channel, first when Pl = 10-5 
and P2 =0.01, and second when Pl =0.005 and P2 =0.01, 
are Go=3.36 x 10 -4 and Go=0.01274 respectively. The 
predictions provided by expressions (7), (12) and (13) are 
respectively 33% high and 16% low.) However, the 
growth rate laws discussed here are excellent examples 
of the concept of scaling laws in physics. When one 
relevant parameter becomes much smaller or larger 
than another, the physical description often simplifies 
considerably and simple physical laws result. The physical 
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laws do not apply very well when both parameters have 
comparable value; the physical description is usually 
much more complicated in such 'crossover' regions. (If 
we had unlimited computer resources, we could study 
the model over a much broader range of input parameters 
and observe well delineated regimes. For example, the 
condition for regime II is b<<Lf<<L. When we set L= 50b, 
we do not provide an extremely broad range for 
regime II to develop.) Therefore, it may be more proper 
to refer to regime crossovers than to regime transitions, 
but the nomenclature seems already to be well set. Also 
it is usually the case that quantities such as i and g are 
strong functions of temperature, changing by many orders 
of magnitude as the temperature changes only a few 
degrees. With this model we do not see abrupt regime 
transitions since we work directly with the parameters 
Pl, P2, etc. In nature the transitions can be much more 
abrupt if viewed, for example, as functions of temperature. 

The growth-front curvature observed either with this 
model or as approximated by the elliptical-profile 
solutions to the Seto-Frank equations is now seen to be 
a direct consequence of the proximity of regime III. 
Specifically, there is no need to modify or replace 
the traditional kinetic nucleation model of polymer 
crystallization 3-5 with the surface roughening notions 
proposed by Sadler x3-21. Curved growth fronts appear 
to be the expected morphology of polymer single crystals 
grown in or near regime III. This has probably gone 
unnoticed because of the difficulty of obtaining single 
crystals in regime III. In fact, the standard Eden cluster 
appears to be the predicted structure of regime III single 
crystals. We note that DiCorleto and Bassett have 
reported single crystals of polyethylene having circular 
morphology 1°. The regime in which these crystals were 
grown is not known, but regime III growth is not an 
unreasonable assumption. 

Regimes I and II correspond to the more traditional 
view of polymer nucleation theory, in which a single 
nucleation event (i.e. the pl-process in our model) gives 
rise, through substrate completion (i.e. the p2-process), 
to the crystallization of a large number of polymer stems. 
Regime III, and the resultant curved edges, is a more 
recent extension of the same ideas to the situation 
when substrate completion becomes less important. 
Apparently, there are those who object to using the phrase 
'nucleation' to refer to this more recent extension, but it 
is important to note that the issue is really only one of 
semantics. 

Despite the success of this model in predicting 
regimes I, II and Ill, and in predicting growth front 
curvature, there are certain ways in which the model is 
too simple. Particularly, the standard Eden model and 
its generalization studied here can contain voids, 
especially under conditions corresponding to regime III. 
In order to eliminate voids, it would be necessary to 
modify the model along the lines already considered by 
other authors 54'56 5s. In these studies, constraints are 
applied specifically to eliminate voids. We are confident 
that such constraints will appreciably affect neither the 
global cluster structure nor the overall growth rates, 
although they certainly affect the fine structure of the 
boundary. 
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